

Смарт-бета инвестирование на российском рынке

бакалавриат Цифровая экономика

Студент: Шамсутдинов Аяз Асхатович

Научный руководитель: с.н.с, к.э.н., Чернова Мария Игоревна

2 АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЯ

Смарт-бета стратегии — это подход к формированию инвестиционного портфеля, при котором включаются все акции, но их веса определяются не по рыночной капитализации, а по альтернативным правилам (факторам).

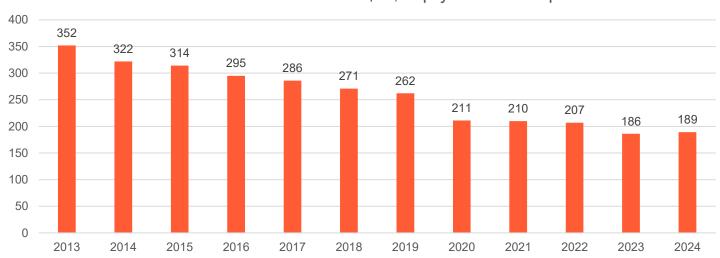
- Нестабильность российских рынков и ограниченный доступ к зарубежным инструментам повышают спрос на альтернативы традиционному индексному инвестированию.
- Смарт-бета подходы могут удовлетворить растущий интерес к эффективным и устойчивым стратегиям инвестирования
- Смарт-бета стратегии позволяют улучшить показатели риск/доходности
- Низкая изученность и недоступность смарт-бета стратегий для частного инвестора на российском рынке создают потенциал для исследований.

ЦЕЛИ И ЗАДАЧИ ИССЛЕДОВАНИЯ

ЦЕЛЬ ИССЛЕДОВАНИЯ:

Сформировать и оценить параметры риска и доходности ключевых смарт-бета стратегий на российском рынке.

ЗАДАЧИ ИССЛЕДОВАНИЯ:


- Провести анализ научных исследований в области смарт-бета инвестирования;
- Выявить ключевые смарт-бета стратегии;
- Собрать и обработать эмпирические данные по российским компаниям для последующего тестирования стратегий;
- Разработать методологию анализа смарт-бета факторов;
- Провести сравнительный анализ доходности и волатильности смарт-бета стратегий и стандартных индексных подходов;
- Оценить преимущества и ограничения смарт-бета стратегий перед бенчмарками на российском рынке.

Выборка

- Период с 2013 по 2024 год
- 3 бенчмарка
 - Индекс Московской Биржи (IMOEX)
 - Индекс Голубых фишех (МОЕХВС)
 - Equal weight
- 5 смарт-бета стратегий:
 - Low volatility
 - Momentum
 - Small capitalization
 - Top capitalization
 - Dividend_Yield

Кол-во обыкновенных акций, торгуемых на Бирже

Название	Период	Средняя доходнос ть	Средняя волатильно сть	Описание
Индекс МосБиржи	01.2013- 12.2024	0,64%	1,2%	Индекс российского фондового рынка, включающий наиболее ликвидные акции крупнейших и динамично развивающихся российских эмитентов, представленных на Московской бирже
Индекс МосБиржи голубых фишек	01.2013- 12.2024	0,60%	1,3%	Является индикатором рынка наиболее ликвидных акций российских компаний или так называемых "голубых фишек"
Equal weight	01.2013- 12.2024	0,45%	1%	Инвестиционная стратегия, при которой все активы в портфеле имеют одинаковый вес независимо от их рыночной капитализации и ликвидности

Источник: Московская биржа

2025

Расчет весов

Методология построения стратегий

Low volatility

Momentum

Top cap

Small cap

Dividend_Yeild

Сбор данных с АРІ Московской Биржи и их подготовка для дальнейшей работы

$$w_i^{\text{HOPM}} = \frac{\frac{1}{\mathsf{Rank}(\sigma_i)}}{\sum_{j=1}^{N} \frac{1}{\mathsf{Rank}(\sigma_j)}}$$

$$w_i = \frac{R_i}{\sum_{j \in S} R_j},$$

$$\mathbf{w}_{i} = rac{\mathsf{Ka}$$
питализация $_{i}}{\sum_{j=1}^{N} \mathsf{Ka}$ питализация $_{j}}$,

$$w_i = rac{\dfrac{1}{ ext{Капитализация}_i}}{\displaystyle\sum_{j=1}^N \dfrac{1}{ ext{Капитализация}_j}},$$

$$w_i = \frac{DY_i}{\sum_{j=1}^N DY_j}$$

$$R_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}}$$

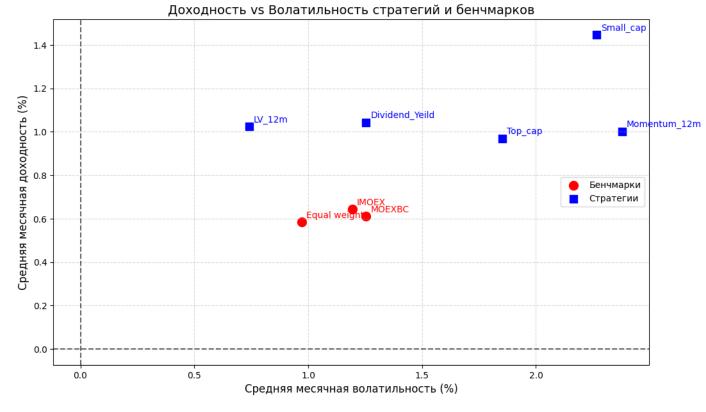
$$R_t^{\text{портфель}} = \sum_{i=1}^N w_i R_{i,t}$$

Ребалансировка: 1, 3, 6, 12 месяцев

Ребалансировка: 1, 3, 6, 12 месяцев Ребалансировка: 12 месяцев

Ребалансировка: 12 месяцев

Ребалансировка: 12 месяцев


Выдвигаемые гипотезы

- *H1*: Смарт-бета стратегии, основанные на низкой волатильности, высокой прошлой доходости, капитализации и высокой дивидендной доходности, обеспечивают увеличенную доходность по сравнению с индексными стратегиями;
- *H2*: Смарт-бета стратегии по-разному реагируют на рыночные циклы:
 - **H2_1**: Стратегии высокой прошлой доходости, капитализации и высокой дивидендной доходности демонстрируют проциклическое поведение;
 - **H2_2**: Стратегии низкой волатильности проявляют контрциклические признаки
- *Н3*: Частая ребалансировка стратегий низкой волатильности и высокой прошлой доходности способствует увеличению их доходности;

Проверка первой гипотезы

- Гипотеза об увеличенной доходности смарт-бета стратегий **частично подтвердилась**
- Средние доходности и волатильности смарт-бета стратегий за весь период:
 - LV 12m: доходность 1,0%, волатильность 0,7%
 - Momentum 12m: доходность 1,0%, волатильность 2,3%
 - Тор Сар: доходность 0,96%, волатильность 1,8%
 - Small Cap: доходность 1,4%, волатильность 2,2%
 - Div_Yeild: доходность 1,1%, волатильность 1,2%
- Средние доходности и волатильности бенчмарков за весь период:
 - IMOEX: доходность 0,6%, волатильность 1,2%
 - MOEXBC: доходность 0,6%, волатильность 1,3%
 - Equal weight: доходность 0,5%, волатильность 1,0%
- Альфа для САРМ скользящими окнами (24 месяца):
 - LV показала значимые положительные альфы преимущественно в последние годы (2020-2023)
 - Мотептит не показал значимые положительные альфы ни на одном периоде
 - Тор_Сар показала значимые положительные альфы в 2022–2024 годах, особенно в 2022–2023 годах
 - Small_Сар демонстрировала значимые положительные альфы в нескольких интервалах: в 2016–2017 годах и более выраженно в 2022–2024 годах, с пиками в 2022–2023 годах
 - Div_Yield показала значимые положительные альфы в начале периода (2016–2017)

Таблица с показателями проверки гипотезы

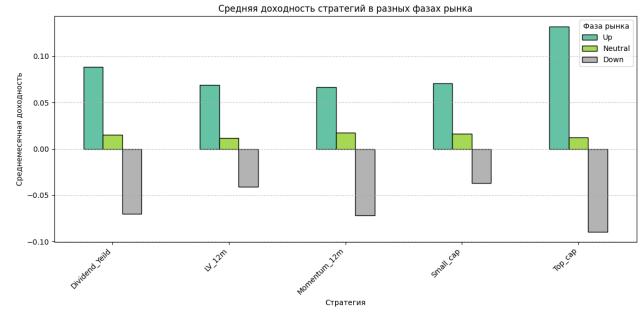
		Премия	САРМ		
Стратегия	IMOEX	MOEXBC	Equal wieght	Доля месяцев, еде альфа значима	Средняя альфа в значимые периоды
LV_12m	0,38%	0,41%	0,44%	12%	1,20%
Momentum_12m	0,36%	0,39%	0,42%	0%	-
Тор_сар	0,33%	0,36%	0,39%	7%	0,70%
Small_cap	0,80%*	0,84%*	0,86%*	9%	2,80%
Dividend_Yield	0,40%	0,43%	0,46%	26%	1,00%

^{*** - 1%} уровень значимости; ** - 5% уровень значимости; * - 10% уровень значимости.

Проверка второй гипотезы

Результаты проверки второй гипотезы

Фаза/Значение	Mea	n return	
Phase	Down	Up	
LV_12m	-4,1%***	6,9%***	
Momentum_12m	-7,2%***	6,7%***	
Top_cap	-8,9%***	13,2%***	
Small_cap	-3,7%***	7,1%***	
Dividend_Yield	-7,0%***	8,8%***	


^{*** - 1%} уровень значимости; ** - 5% уровень значимости; * - 10% уровень значимости.

• *H2_1* подтвердилась:

Стратегии высокой прошлой доходости, капитализации и высокой дивидендной доходности демонстрируют проциклическое поведение с высокой доходностью в фазах роста и снижением эффективности в фазах спада

H2_2 подтвердилась:

Стратегии низкой волатильности проявляют признаки контрцикличности, показывая большую устойчивость в условиях рыночного снижения

Методология определения месяцев по категориям

Проверка третей гипотезы

Гипотеза о том, что частая ребалансировка смарт-бета стратегий низкой волатильности и высокой прошлой доходности способствует значимому увеличению их доходности, не подтвердилась.

Стратегии	Параметрический тест (ANOVA):	Непараметрический тест (Крускала-Уоллиса):	Вывод
Low volatility	0.9702	0.7234	Нет достаточных доказательств различий между стратегиями
Momentum	0.9857	0.5914	Нет достаточных доказательств различий между стратегиями

Сравнение стратегий	U-критерий Манна — Уитни, p-value	Вывод				
Low volatility						
1 month vs 3 month	0.8050	Различий нет				
1 month vs 6 month	0.4788	Различий нет				
1 month vs 12 month	0.2603	Различий нет				
3 month vs 6 month	0.6309	Различий нет				
3 month vs 12 month	0.4640	Различий нет				
6 month vs 12 month	0.8137	Различий нет				
	Momentum					
1 month vs 3 month	0.4903	Различий нет				
1 month vs 6 month	0.3723	Различий нет				
1 month vs 12 month	0.1837	Различий нет				
3 month vs 6 month	0.7962	Различий нет				
3 month vs 12 month	0.4948	Различий нет				
6 month vs 12 month	0.6264	Различий нет				

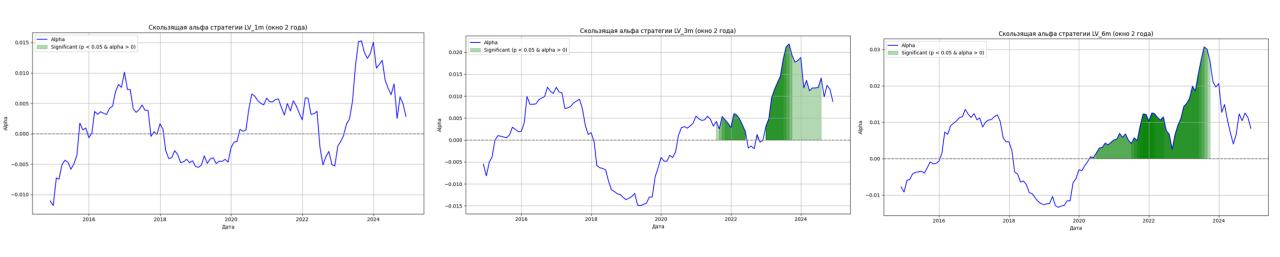
Результат исследования

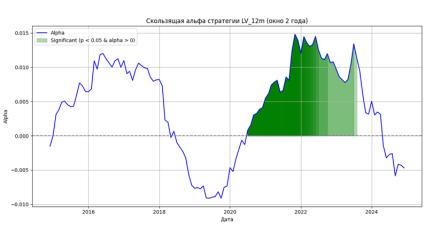
Научный результат:

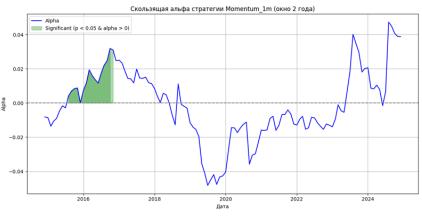
- Смарт-бета стратегии превосходят по доходности бенчмарки
- Текущая фаза рынка играет существенную роль в формировании доходности смарт-бета стратегий:
 - Стратегии высокой прошлой доходости, капитализации и высокой дивидендной доходности демонстрируют процикличиское поведение
 - Стратегии низкой волатильности проявляют контрциклические признаки
- Выбор частоты ребалансировки не играет существенной роли в повышенной доходности стратегий смарт-бета

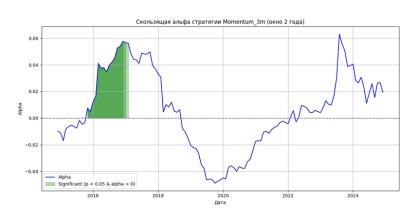
Выводы:

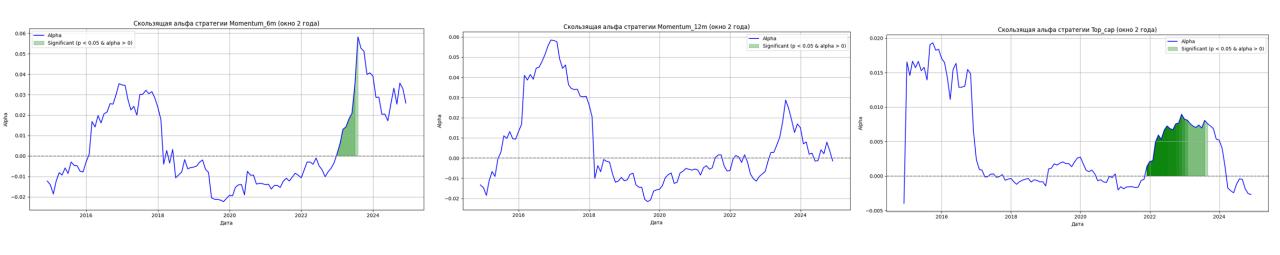
• Разработка доступных инструментов для практического применения стратегий смарт-бета в портфелях российских частных инвесторов обладает потенциалом повышения эффективности инвестиций с точки зрения соотношения риск—доходность. Однако для достижения устойчивых результатов такие инструменты должны учитывать текущую фазу рыночного цикла и быть ориентированы на ограниченный набор факторов, демонстрирующих наибольшую устойчивость в условиях российского рынка.

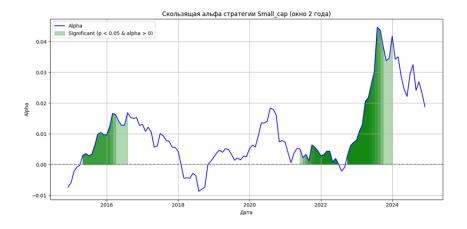

СПАСИБО ЗА ВНИМАНИЕ!

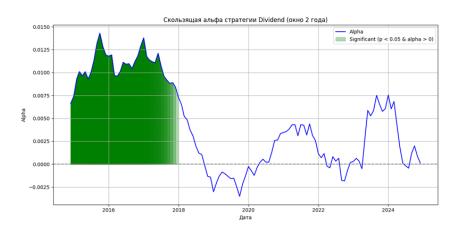



Приложения


Регрессия скользящими окнами







Регрессия скользящими окнами

15

Методология САРМ

- Модель CAPM Capital Asset Pricing Model со скользящими окнами размером 24 месяца с шагом в 1 месяц.
- Безрисковая ставка $(R_{f,t})$ средняя доходность трёхмесячных государственных облигаций за исследуемый период (2013–2024 гг.)
- Рыночная премия определяется как:

$$R_{m,t}^{\mathsf{excess}} = R_{m,t} - R_{f,t}$$
, где $R_{m,t}$ — доходность рыночного портфеля (индекс МосБиржи, IMOEX)

• Избыточная доходность смарт-бета стратегии:

$$R_{s,t}^{\mathsf{excess}} = R_{s,t} - R_{f,t}$$
, где $R_{s,t}$ — доходность смарт-бета стратегии

• САРМ-регрессия

$$R_{s,t}^{\mathsf{excess}} = \alpha_t + \beta_t \cdot R_{m,t}^{\mathsf{excess}} + \varepsilon_t$$
, где

 $lpha_t$ — альфа в окне, отражающая избыточную доходность, не объяснённую рыночным риском, eta_t — бета-коэффициент, измеряющий чувствительность стратегии к рыночной доходности, $arepsilon_t$ — случайная ошибка.

Методология Тор_Сар

- сбор данных о рыночной капитализации компаний. Для каждого года исследования осуществлялась загрузка данных о рыночной капитализации компаний с использованием таблиц, загруженных с сайта Московской биржи;
- Расчет весов портфеля. Для формирования портфеля использовались данные о капитализации компаний за текущий год. Доля каждой компании рассчитывалась как отношение её капитализации к суммарной капитализации всех компаний:

$$w_i = rac{ ext{Капитализация}_i}{\sum_{j=1}^N ext{Капитализация}_j},$$

где w_i — вес i-й компании в портфеле;

Рассчитывались месячные доходности для каждой компании по следующий формуле:

$$R_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}}$$

Итоговая доходность портфеля рассчитывалась как взвешенная сумма доходностей всех компаний:

$$R_t^{\mathsf{портфель}} = \sum_{i=1}^N w_i \, R_{i,t}$$

Методология Small_Cap

- 1) Сбор данных о рыночной капитализации компаний. Для каждого года исследования осуществлялась загрузка данных о рыночной капитализации компаний с использованием таблиц, загруженных с сайта Московской биржи;
- 2) Насчет весов для портфеля. В отличие от стратегии Top Capitalization, где веса портфеля пропорциональны капитализации компаний, стратегия Small Capitalization предполагает расчет весов обратно пропорционально рыночной капитализации. Формула для вычисления весов выглядит следующим образом:

$$w_i = rac{\dfrac{1}{\mathsf{Ka}$$
питализация $_i}}{\displaystyle\sum_{j=1}^{N}\dfrac{1}{\mathsf{Ka}}$ питализация $_j$

где w_i — вес і-й компании в портфеле, N — общее количество компаний;

- 3) Расчет доходностей портфеля. Доходности портфеля рассчитываются по следующему алгоритму.
- 4) Итоговая доходность портфеля рассчитывалась как взвешенная сумма доходностей всех компаний:

$$R_t^{\mathsf{портфель}} = \sum_{i=1}^N w_i \, R_{i,t}$$

Методология Momentum

- 1) Загружаются исторические данные о ценах акций для расчета доходностей за предыдущий период
- 2) Расчет доходностей за предыдущий период. Для оценки исторической доходности используются данные за период, предшествующий тестируемому
- 3) Все акции ранжируются по доходности, и они делятся на 10 равных групп (децили).
- 4) Акции из верхнего дециля (победители) получают положительные веса, пропорциональные их доходности.
- 5) Вес для каждой акции рассчитывается по формуле:

$$w_i = \frac{R_i}{\sum_{j \in S} R_j},$$

где S — группа (верхний дециль).

6) Итоговая доходность портфеля рассчитывалась как взвешенная сумма доходностей всех компаний:

$$R_t^{\mathsf{портфель}} = \sum_{i=1}^N w_i \, R_{i,t}$$

19

Методология Low volatility

- 1) Сбор данных. Исторические данные о ценах акций загружаются для выбранного периода анализа;
- 2) Для оценки исторической волатильности используются данные за предыдущий период (месяц, 3 месяца, 6 месяцев или год).
- 3) Волатильность рассчитывается как стандартное отклонение доходностей с учетом пересчета:

$$\sigma = (R)$$
, где R — доходность.

- 4) Все акции ранжируются по значениям исторической волатильности в порядке возрастания (от меньшей к большей).
- 5) Вес акций определяется как величина, обратная рангу волатильности:

$$w_i = \frac{1}{\mathsf{Rank}(\sigma_i)}(2.7)$$

6) Для нормализации суммарного веса:

$$w_i^{\text{HOPM}} = \frac{w_i}{\sum_{j=1}^{N} w_j}, (2.8)$$

где w_i^{HOPM} — нормализованный вес і-й акции.

7) Итоговая доходность портфеля рассчитывалась как взвешенная сумма доходностей всех компаний:

$$R_t^{\mathsf{портфель}} = \sum_{i=1}^N w_i \, R_{i,t}$$

Методология дивидендной доходности

- 1. Сбор данных о дивидендах и ценах акций. Для реализации стратегии использовались исторические цены акций и информация о дивидендных выплатах, загруженная с использование API Московской биржи
- 2. Расчет дивидендной доходности
 - а) Для каждой компании определялась совокупная величина выплаченных дивидендов за год.
 - b) Для расчета дивидендной доходности использовались цены акций на дату закрытия реестра

$$DY = \frac{\text{Суммарные дивиденды за год}}{\text{Цена акции на дату реестра}}$$
, где DY — дивидендная доходность.

- 3. Формирование портфеля
 - а) Акции с рассчитанной дивидендной доходностью ранжировались в порядке убывания.
 - b) Вес каждой компании в портфеле определялся пропорционально её дивидендной доходности

$$w_i = \frac{DY_i}{\sum_{j=1}^{N} DY_j}$$

- с) После нормализации весов портфель оставался фиксированным на весь следующий год.
- 4. Расчет доходностей портфеля по следующей формуле:

$$R_t^{\Pi O D T \phi e \mathcal{I} \mathcal{B}} = \sum_{i=1}^N w_i R_{i,t}$$

Тест Крускала–Уоллиса

Тест Крускала–Уоллиса — это непараметрический аналог ANOVA, используемый для сравнения медианных значений нескольких групп. Он проверяет нулевую гипотезу (H₀) о том, что все группы имеют одинаковое распределение (медианы равны), против альтернативной гипотезы (H₁), что хотя бы одна группа отличается.

Тест Крускала—Уоллиса не требует предположений о нормальности распределения данных или гомогенности дисперсий, что делает его подходящим для финансовых данных, где доходности часто имеют ненормальное распределение (например, из-за выбросов или асимметрии).

Поскольку ANOVA может быть чувствителен к нарушениям предположений, тест Крускала–Уоллиса использовался для подтверждения результатов ANOVA, особенно в условиях возможной высокой изменчивости доходностей, характерной для стратегий Momentum.

Тест Манна–Уитни (Mann-Whitney U Test)

Тест Манна–Уитни — это непараметрический тест, используемый для парного сравнения двух групп. Он проверяет нулевую гипотезу (H_0) о том, что распределения двух групп одинаковы (медианы равны), против альтернативной гипотезы (H_1), что распределения различаются.

После теста Крускала—Уоллиса, который выявляет общие различия между группами, тест Манна—Уитни использовался для парного сравнения стратегий (например, Momentum_1m против Momentum_3m, Momentum_1m против Momentum_6m и т.д.). Это позволяет точно определить, между какими частотами перебалансировки есть значимые различия в доходностях.

Тест работает с рангами, а не с абсолютными значениями, что снижает влияние экстремальных значений доходностей, которые могут возникать в стратегиях Momentum из-за резких рыночных движений.

Тест Манна–Уитни менее мощный, чем t-тест, если данные нормально распределены, но в случае ненормальных данных он более надёжен. Учитывая возможную ненормальность доходностей, выбор теста оправдан.

23 ANOVA (Analysis of Variance, дисперсионный анализ)

ANOVA — это параметрический статистический тест, используемый для сравнения средних значений нескольких групп (в данном случае, доходностей стратегий с разной частотой перебалансировки: ежемесячной, трехмесячной, полугодовой и ежегодной). Тест проверяет нулевую гипотезу (H_0) о том, что средние значения всех групп равны, против альтернативной гипотезы (H₁), что хотя бы в одной группе среднее значение отличается.

В исследовании сравниваются четыре группы (частоты перебалансировки), что делает ANOVA подходящим инструментом, так как он разработан для анализа более чем двух групп одновременно, в отличие от t-теста, который сравнивает только две группы.

ANOVA используется как параметрический тест для начальной оценки общих различий, предполагая нормальность данных. Это стандартный подход в финансовых исследованиях для сравнения нескольких групп.

Тест Крускала–Уоллиса дополняет ANOVA, обеспечивая непараметрическую альтернативу, которая устойчива к ненормальности и выбросам, что критично для финансовых данных.

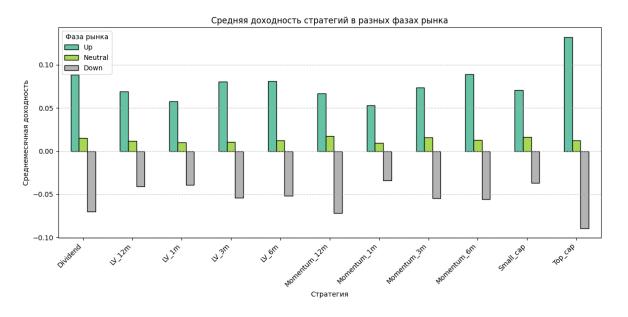
Тест Манна–Уитни применяется для детализации результатов, позволяя выявить, между какими конкретными парами частот перебалансировки есть различия. Это обеспечивает более глубокий анализ после общего теста Крускала-Уоллиса.

24 Для второй гипотезы

t-тест Стьюдента для двух независимых выборок — это параметрический статистический тест, используемый для сравнения средних значений двух групп. В контексте исследования он применялся для проверки различий между средними доходностями смарт-бета стратегий (Low Volatility, Momentum, Top Capitalization, Small Capitalization, Dividend) и индексных бенчмарков (IMOEX, MOEXBC, Equal Weight).

Вторая гипотеза предполагает сравнение доходностей смарт-бета стратегий с бенчмарками для оценки их устойчивости и превосходства. t-тест подходит для этой задачи, так как он непосредственно сравнивает средние значения двух групп (стратегия vs. бенчмарк).

Для проверки второй гипотезы использовался t-тест Стьюдента для двух независимых выборок, который сравнивал среднемесячные доходности смарт-бета стратегий (Low Volatility, Momentum, Top Capitalization, Small Capitalization, Dividend) с бенчмарками (IMOEX, MOEXBC, Equal Weight). Его применение оправдано задачей парного сравнения количественных данных и большим размером выборки (132 месяца), что снижает чувствительность к ненормальности.


APXIB

Проверка третей гипотезы

президентская АКАДЕМИЯ

Стратегии, которые имели значимые различия в доходностях с ІМОЕХ

Фаза/Значение	Mean	return	P-value		
Phase	Down	Up	Down	Up	
Dividend	-7,0%***	8,8%***	0,00	0,00	
LV_1m	-3,9%***	5,7%***	0,00	0,00	
LV_3m	-5,4%***	8,1%***	0,00	0,00	
LV_6m	-5,2%***	8,1%***	0,00	0,00	
LV_12m	-4,1%***	6,9%***	0,00	0,00	
Momentum_1m	-3,4%	5,3%*	0,23	0,06	
Momentum_3m	-5,4%**	7,4%**	0,01	0,01	
Momentum_6m	-5,6%***	8,9%***	0,00	0,00	
Momentum_12 m	-7,2%***	6,7%***	0,00	0,00	
Small_cap	-3,7%***	7,1%***	0,00	0,00	
Top_cap	-8,9%***	13,2%***	0,00	0,00	

Смарт-бета стратегии по-разному реагируют на рыночные циклы: большинство из них демонстрируют процикличное поведение с высокой доходностью в фазах роста и снижением эффективности в фазах спада, тогда как стратегии низкой волатильности проявляют признаки контрцикличности, показывая большую устойчивость в условиях рыночного снижения;

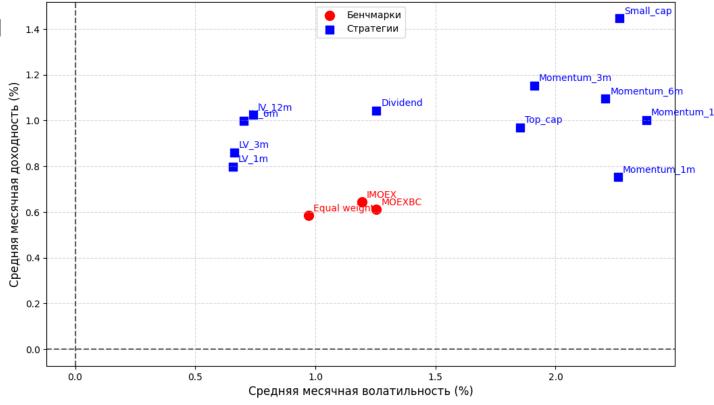
Результат исследования

Научный результат:

Смарт-бета стратегии демонстрируют потенциал для повышения доходности и управления рисками на российском рынке, но их эффективность зависит от выбора факторов и рыночных условий

Теоретическая значимость:

- Анализ адаптации зарубежных методологий к российскому рынку, включая учёт специфики местных компаний, макроэкономических условий и рыночных циклов, внёс вклад в теоретическое осмысление смарт-бета инвестирования на развивающихся рынках;
- Исследование подтвердило гипотезу о частичном превосходстве смарт-бета стратегий над традиционными индексными подходами, особенно для стратегии малой капитализации.


Практическая значимость:

- Результаты могут быть использованы инвесторами для оптимизации портфелей: стратегии малой капитализации подходят для инвесторов, ищущих высокую доходность, а стратегии низкой волатильности для консервативных инвесторов;
- Исследование подчёркивает важность учёта рыночных условий и ограничения частой ребалансировки для некоторых стратегий;
- Внедрение смарт-бета подходов может способствовать развитию российского фондового рынка, предлагая инвесторам более гибкие и эффективные инструменты для достижения финансовых целей.

Проверка второй гипотезы

Дополнительные САРМ-модели со скользящими окнами, представленные в приложении, выявили, что Dividend, Small_cap, Top_cap и низковолатильные стратегии генерируют значимую избыточную доходность в периоды рыночного восстановления, тогда как моментум-стратегии показывают лишь краткосрочные успехи, оставаясь нестабильными в условиях волатильности.

Таким образом, гипотеза об увеличенной доходности смарт-бета стратегий по сравнению с индексными частично подтвердилась

Показатели статистики и р-значения для проверки гипотезы об увеличенной доходности смарт-бета стратегий относительно индексных

Бенчмарк	IMOEX			MOEXBC			Equal weight					
	1m	3m	6m	12m	1m	3m	6m	12m	1m	3m	6m	12m
LV	0,35	0,35	0,32	0,63	0,46	0,33	0,30	0,69	0,21	0,22	0,20	0,14
Momentum	0,46	0,32	0,27	0,33	0,45	0,31	0,26	0,32	0,40	0,25	0,21	0,25
Тор_сар				0,29	1	_	_	0,27		_	_	0,21
Small_cap	_	_	_	0,10*	_	_	_	0,09*	_	_	_	0,05**
Div	_	_	_	0,24	_	_	_	0,22	_	_	_	0,13

Примечание: Односторонний t-тест Стьюдента для проверки гипотезы H0: Средняя доходность стратегии не превышает доходность бенчмарка

2025

Методология построения стратегий

30 Выборка

Период	Количество компаний
01.2013-01.2014	352
01.2014-01.2015	322
01.2015-01.2016	314
01.2016-01.2017	295
01.2017-01.2018	286
01.2018-01.2019	271
01.2019-01.2020	262
01.2020-01.2021	211
01.2021-01.2022	210
01.2022-01.2023	207
01.2023-01.2024	186
01.2024-12.2024	189

Название	Период	Средняя доходнос ть	Средняя волатильно сть	Описание
Индекс МосБиржи	01.2013- 12.2024	0,64%	1,2%	Индекс российского фондового рынка, включающий наиболее ликвидные акции крупнейших и динамично развивающихся российских эмитентов, представленных на Московской бирже
Индекс МосБиржи голубых фишек	01.2013- 12.2024	0,60%	1,3%	Является индикатором рынка наиболее ликвидных акций российских компаний или так называемых "голубых фишек"
Equal weight	01.2013- 12.2024	0,45%	1%	Инвестиционная стратегия, при которой все активы в портфеле имеют одинаковый вес независимо от их рыночной капитализации и ликвидности

Источник: Московская биржа

2025

Тест Крускала–Уоллиса

Тест Крускала–Уоллиса — это непараметрический аналог ANOVA, используемый для сравнения медианных значений нескольких групп. Он проверяет нулевую гипотезу (H₀) о том, что все группы имеют одинаковое распределение (медианы равны), против альтернативной гипотезы (H₁), что хотя бы одна группа отличается.

Тест Крускала—Уоллиса не требует предположений о нормальности распределения данных или гомогенности дисперсий, что делает его подходящим для финансовых данных, где доходности часто имеют ненормальное распределение (например, из-за выбросов или асимметрии).

Поскольку ANOVA может быть чувствителен к нарушениям предположений, тест Крускала–Уоллиса использовался для подтверждения результатов ANOVA, особенно в условиях возможной высокой изменчивости доходностей, характерной для стратегий Momentum.

32 Тест Манна–Уитни (Mann-Whitney U Test)

Тест Манна–Уитни — это непараметрический тест, используемый для парного сравнения двух групп. Он проверяет нулевую гипотезу (H_0) о том, что распределения двух групп одинаковы (медианы равны), против альтернативной гипотезы (Н₁), что распределения различаются.

После теста Крускала–Уоллиса, который выявляет общие различия между группами, тест Манна–Уитни использовался для парного сравнения стратегий (например, Momentum 1m против Momentum 3m, Momentum_1m против Momentum_6m и т.д.). Это позволяет точно определить, между какими частотами перебалансировки есть значимые различия в доходностях.

Тест работает с рангами, а не с абсолютными значениями, что снижает влияние экстремальных значений доходностей, которые могут возникать в стратегиях Momentum из-за резких рыночных движений.

Тест Манна–Уитни менее мощный, чем t-тест, если данные нормально распределены, но в случае ненормальных данных он более надёжен. Учитывая возможную ненормальность доходностей, выбор теста оправдан.

33 ANOVA (Analysis of Variance, дисперсионный анализ)

ANOVA — это параметрический статистический тест, используемый для сравнения средних значений нескольких групп (в данном случае, доходностей стратегий с разной частотой перебалансировки: ежемесячной, трехмесячной, полугодовой и ежегодной). Тест проверяет нулевую гипотезу (H_0) о том, что средние значения всех групп равны, против альтернативной гипотезы (H₁), что хотя бы в одной группе среднее значение отличается.

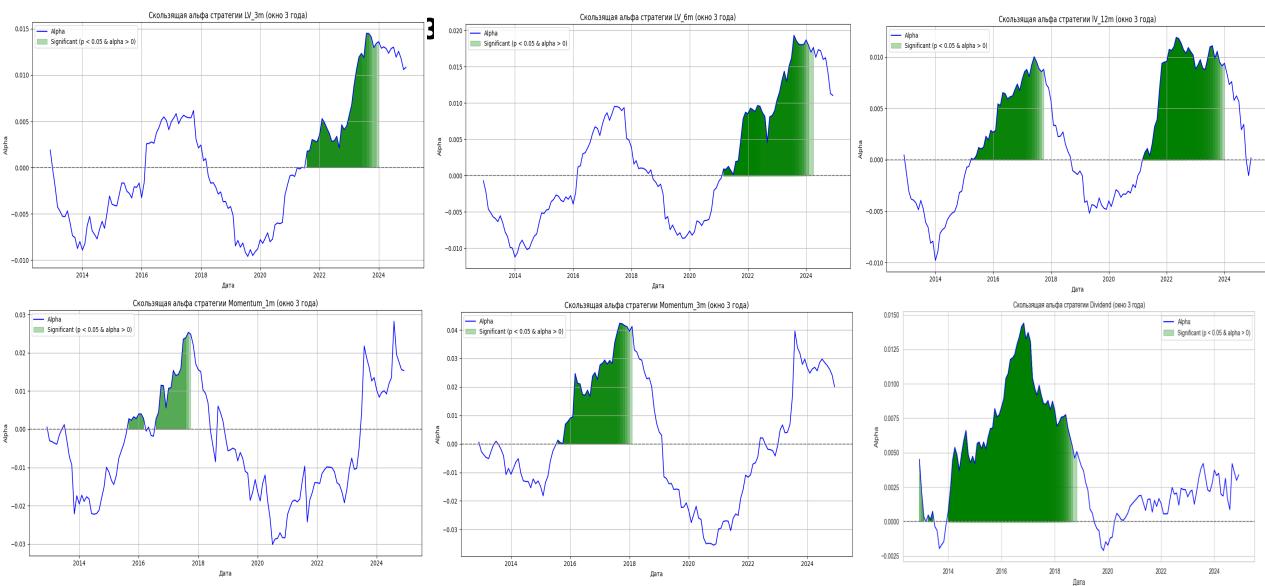
В исследовании сравниваются четыре группы (частоты перебалансировки), что делает ANOVA подходящим инструментом, так как он разработан для анализа более чем двух групп одновременно, в отличие от t-теста, который сравнивает только две группы.

ANOVA используется как параметрический тест для начальной оценки общих различий, предполагая нормальность данных. Это стандартный подход в финансовых исследованиях для сравнения нескольких групп.

Тест Крускала–Уоллиса дополняет ANOVA, обеспечивая непараметрическую альтернативу, которая устойчива к ненормальности и выбросам, что критично для финансовых данных.

Тест Манна–Уитни применяется для детализации результатов, позволяя выявить, между какими конкретными парами частот перебалансировки есть различия. Это обеспечивает более глубокий анализ после общего теста Крускала-Уоллиса.

34 Для второй гипотезы



t-тест Стьюдента для двух независимых выборок — это параметрический статистический тест, используемый для сравнения средних значений двух групп. В контексте исследования он применялся для проверки различий между средними доходностями смарт-бета стратегий (Low Volatility, Momentum, Top Capitalization, Small Capitalization, Dividend) и индексных бенчмарков (IMOEX, MOEXBC, Equal Weight).

Вторая гипотеза предполагает сравнение доходностей смарт-бета стратегий с бенчмарками для оценки их устойчивости и превосходства. t-тест подходит для этой задачи, так как он непосредственно сравнивает средние значения двух групп (стратегия vs. бенчмарк).

Для проверки второй гипотезы использовался t-тест Стьюдента для двух независимых выборок, который сравнивал среднемесячные доходности смарт-бета стратегий (Low Volatility, Momentum, Top Capitalization, Small Capitalization, Dividend) с бенчмарками (IMOEX, MOEXBC, Equal Weight). Его применение оправдано задачей парного сравнения количественных данных и большим размером выборки (132 месяца), что снижает чувствительность к ненормальности.

